Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In traditional image processing, the Fourier transform is often used to transform an image from the spatial domain to the frequency domain, and frequency filters are designed from the perspective of the frequency domain to sharpen or blur the image. In the field of remote sensing change detection, deep learning is beginning to become a mainstream tool. However, deep learning can still refer to traditional methodological ideas. In this paper, we designed a new convolutional neural network (MFGFNet) in which multiple global filters (GFs) are used to capture more information in the frequency domain, thus sharpening the image boundaries and better preserving the edge information of the change region. In addition, in MFGFNet, we use CNNs to extract multi-scale images to enhance the effects and to better focus on information about changes in different sizes (multi-scale combination module). The multiple pairs of enhancements are fused by the difference method and then convolved and concatenated several times to obtain a better difference fusion effect (feature fusion module). In our experiments, the IOUs of our network for the LEVIR-CD, SYSU, and CDD datasets are 0.8322, 0.6780, and 0.9101, respectively, outperforming the state-of-the-art model and providing a new perspective on change detection.

Details

Title
MFGFNet: A Multi-Scale Remote Sensing Change Detection Network Using the Global Filter in the Frequency Domain
Author
Yuan, Shiying 1   VIAFID ORCID Logo  ; Zhong, Ruofei 1 ; Li, Qingyang 1 ; Dong, Yaxin 1 

 Key Laboratory of 3D Information Acquisition and Application, MOE, Capital Normal University, Beijing 100048, China; Base of the State Key Laboratory of Urban Environmental Process and Digital Modeling, Capital Normal University, Beijing 100048, China; College of Resource Environment and Tourism, Capital Normal University, Beijing 100048, China 
First page
1682
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2791699216
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.