Full Text

Turn on search term navigation

© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The aim of the study was to detect the influence of nitrogen pressure on the rheological properties and structure of PA66 GF30 thick-walled parts, produced by means of microcellular injection molding (MIM), using the MuCell® technology. The process was monitored in-line with pressure and temperature sensors assembled in the original injection mold. The measured data was subsequently used to evaluate rheological properties inside an 8.4 mm depth mold cavity. The analysis of the microcellular structure was related to the monitored in-line pressure and temperature changes during the injection process cycle. A four-times reduction of the maximum filling pressure in the mold cavity for MIM was found. At the same time, the holding pressure was taken over by expanding cells. The gradient effect of the cells distribution and the fiber arrangement in the flow direction were observed. A slight influence of nitrogen pressure on the cells size was found. Cells with a diameter lower than 20 µm dominate in the analyzed cases. An effect of reduction of the average cells size in the function of distance to the gate was observed. The creation of structure gradient and changes of cells dimensions were evaluated by SEM images and confirmed with the micro CT analysis.

Details

Title
The Microcellular Structure of Injection Molded Thick-Walled Parts as Observed by In-Line Monitoring
First page
5464
Publication year
2020
Publication date
2020
Publisher
MDPI AG
e-ISSN
19961944
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2467380625
Copyright
© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.