Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Microplastic (MP) pollution is rising at an alarming rate, imposing overwhelming problems for the ecosystem. The impact of MPs on life and environmental cycles has already reached a point of no return; yet global awareness of this issue and regulations regarding MP exposure could change this situation in favor of human health. Detection and separation methods for different MPs need to be deployed to achieve the goal of reversing the effect of MPs. Microfluidics is a well-established technology that enables to manipulate samples in microliter volumes in an unprecedented manner. Owing to its low cost, ease of operation, and high efficiency, microfluidics holds immense potential to tackle unmet challenges in MP. In this review, conventional MP detection and separation technologies are comprehensively reviewed, along with state-of-the-art examples of microfluidic platforms. In addition, we herein denote an insight into future directions for microfluidics and how this technology would provide a more efficient solution to potentially eradicate MP pollution.

Details

Title
Microfluidics as a Ray of Hope for Microplastic Pollution
Author
Ece, Emre 1 ; Hacıosmanoğlu, Nedim 1   VIAFID ORCID Logo  ; Inci, Fatih 1   VIAFID ORCID Logo 

 UNAM-National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey; Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800, Turkey 
First page
332
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20796374
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2791595041
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.