Full Text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Urban street networks in the United States have been primarily designed for automobile traffic with negligible considerations to non-motorized transportation users. Due to environmental issues and quality of life concerns, communities are reclaiming street spaces for active modes and slowing the speeds in their downtown. Moreover, tactical urbanism, i.e., the use of street space for innovative purposes other than moving automobile traffic, is becoming attractive due to reduced automobile travel demand and the need for outdoor activities in the age of the COVID-19 pandemic. This study provides details of the modeling of an urban downtown network (in the City of San Jose) using microscopic traffic simulation. The model is then applied to evaluate the effectiveness of street design changes at varying demand scenarios. The microsimulation approach was chosen because it allows for the detailed modeling and visualization of the transportation networks, including movements of individual vehicles, bicyclists, and pedestrians. The street design change demonstrated here involves one-way to two-way street conversion, but the framework of network-wide impact evaluation may also be used for complete street conversions. The base conditions network was also tested under different travel demand reduction scenarios (10%, 20%, and 30%) to identify the corridors in the city network in which the tactical urbanism strategies (e.g., open-air dining) may be best accommodated. The study provides framework for the use of a microscopic model as part of a decision support system to evaluate and effectively implement complete streets/tactical urbanism strategies.

Details

Title
Microscopic Traffic Simulation as a Decision Support System for Road Diet and Tactical Urbanism Strategies
Author
Liu, Bernice 1 ; Amirarsalan Mehrara Molan 2 ; Pande, Anurag 1 ; Howard, Jonathan 1 ; Alexander, Serena 3 ; Luo, Zhiliang 1 

 Civil and Environmental Engineering, California Polytechnic State University, San Luis Obispo, CA 93407, USA; [email protected] (B.L.); [email protected] (A.P.); [email protected] (J.H.); [email protected] (Z.L.) 
 Department of Civil Engineering, University of Mississippi, Oxford, MS 38677, USA 
 Urban and Regional Planning, San Jose State University, San Jose, CA 95192, USA; [email protected] 
First page
8076
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
20711050
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2554772965
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.