Full Text

Turn on search term navigation

© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Using safe and environmentally benign materials is considered one of the green chemistry approaches to avoid waste production. This research reported the biogenic synthesis of CuO nanoplates using Saussurea costus root extract assisted by a microwave sample preparation system. The phytochemical contents in the Saussurea costus root aqueous extract work as the reducing and capping agents for the nanoparticles. The biosynthesized CuO nanoplates were analyzed using UV–Vis spectroscopy, FT-IR, XRD, HR-TEM, DLS, FESEM, and EDS techniques. According to the HR-TEM and FE-SEM results, the CuO nanoparticles exhibited a plate-like shape with a mean size of 29 nm. Furthermore, the XRD results showed a typical agreement with the pattern of the monoclinic phase of copper oxide. The catalytic efficiency of the CuO nanoplates in the reduction of 4-nitrophenol to 4-aminophenol using NaBH4 was examined in terms of environmental catalytic activity. The reaction time took less than 10 min. Thus, CuO nanoplates synthesized via Saussurea costus root aqueous extract show high catalytic-activity potential for the environmental catalytic application of the removal of nitro pollutants.

Details

Title
Microwave-Sample-Preparation-System-Assisted Biogenic Synthesis of Copper Oxide Nanoplates Using Saussurea costus Root Aqueous Extract and Its Environmental Catalytic Activity
Author
Taha, Amel 1   VIAFID ORCID Logo 

 Department of Chemistry, College of Science, King Faisal University, P.O. Box 400, Hufof 31982, Al-Hassa, Saudi Arabia; [email protected]; Department of Chemistry, Faculty of Science and Technology, Al-Neelain University, Khartoum 11121, Sudan 
First page
1115
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20734344
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2728448421
Copyright
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.