Full text

Turn on search term navigation

Copyright © 2023 Mohsen Eftekharian et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0/

Abstract

Medical intelligence detection systems have changed with the help of artificial intelligence and have also faced challenges. Breast cancer diagnosis and classification are part of this medical intelligence system. Early detection can lead to an increase in treatment options. On the other hand, uncertainty is a case that has always been with the decision-maker. The system’s parameters cannot be accurately estimated, and the wrong decision is made. To solve this problem, we have proposed a method in this article that reduces the ignorance of the problem with the help of Dempster–Shafer theory so that we can make a better decision. This research on the MIAS dataset, based on image processing machine learning and Dempster–Shafer mathematical theory, tries to improve the diagnosis and classification of benign, malignant masses. We first determine the results of the diagnosis of mass type with MLP by using the texture feature and CNN. We combine the results of the two classifications with Dempster–Shafer theory and improve its accuracy. The obtained results show that the proposed approach has better performance than others based on evaluation criteria such as accuracy of 99.10%, sensitivity of 98.4%, and specificity of 100%.

Details

Title
ML-DSTnet: A Novel Hybrid Model for Breast Cancer Diagnosis Improvement Based on Image Processing Using Machine Learning and Dempster–Shafer Theory
Author
Eftekharian, Mohsen 1 ; Nodehi, Ali 1   VIAFID ORCID Logo  ; Enayatifar, Rasul 2 

 Department of Computer Engineering, Gorgan Branch, Islamic Azad University, Gorgan, Iran 
 Department of Computer Engineering, Firoozkooh Branch, Islamic Azad University, Firoozkooh, Iran 
Editor
Dalin Zhang
Publication year
2023
Publication date
2023
Publisher
John Wiley & Sons, Inc.
ISSN
16875265
e-ISSN
16875273
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2889071972
Copyright
Copyright © 2023 Mohsen Eftekharian et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0/