It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Bitcoin en popüler ve yaygın olarak kullanılan dijital para birimidir. Bu nedenle, Bitcoin fiyat hareketinin tahmini finansal piyasalar için büyük önem taşımaktadır. Bitcoin fiyat tahmininde ekonometrik modellerin yanında veri madenciliği yöntemlerinden de faydalanılmaktadır. Veri madenciliğinde kullanılan araç ve yöntemler yardımıyla veriler modellenerek yararlanılacak bilgilere dönüştürülürler. K-Star algoritması veri madenciliği, obje tanımlama ve kontrol sistemleri gibi birçok alanda kullanılmakta olan örnek tabanlı bir yaklaşımdır. Bu çalışmada Makroekonomik değişkenlerin Bitcoin fiyatlarını etkileme seviyeleri, Makine Öğrenme yöntemlerinden Lazy Learning Öğrenmeye Dayalı K-Star Algoritması kullanılarak analiz edilmiştir. Çalışmanın veri seti, bağımlı ve bağımsız değişkenlerin 3 Ocak 2017 - 30 Ocak 2019 yılları arasındaki iş günü bazında 510 adet gözlem değerini içermektedir. Bu gözlemlerin 474 adedi (%93’ü) algoritmanın modellenmesi (eğitim) için, 36 adedi (%7’si) ise sınıflandırma (test) için kullanılmıştır. Modelin Bitcoin fiyatlarını gelecek dönem “yükseliş” mi yoksa “düşüş” mü göstereceğine ilişkin sınıflandırma başarısının %61,1 oranında olduğu, Bitcoin fiyatlarının “yükseliş” göstereceğine ilişkin doğru sınıflandırma başarısının %71,42, “düşüş” göstereceğine ilişkin doğru sınıflandırma başarısının ise %46,66 olduğu tespit edilmiştir. Sonuç olarak Makine Öğrenme Tekniğinin belli bir performans gösterdiği ancak Bitcoin fiyatlarının öngörülebilirliğinin henüz beklentinin altında olduğu ortaya çıkmıştır.