Abstract

The flapping equation for a rotating rigid helicopter blade is typically derived by considering 1) small flap angle, 2) small induced angle of attack and 3) linear aerodynamics. However, the use of nonlinear aerodynamics can make the assumptions of small angles suspect. A general equation describing helicopter blade flap dynamics for large flap angle and large induced inflow angle of attack is derived in this paper with nonlinear aerodynamics . Numerical simulations are performed by solving the nonlinear flapping ordinary differential equation for steady state conditions and the validity of the small angle approximations are examined. It is shown that the small flapping assumption, and to a lesser extent, the small induced angle of attack assumption can lead to inaccurate predictions of the blade flap response in certain flight conditions for some rotors when nonlinear aerodynamics is considered.

Details

Title
Modeling Helicopter Rotor Blade Flapping Motion Considering Nonlinear Aerodynamics
Author
Majhi, Jyoti Ranjan; Ganguli, Ranjan
Pages
25-36
Section
ARTICLE
Publication year
2008
Publication date
2008
Publisher
Tech Science Press
ISSN
1526-1492
e-ISSN
1526-1506
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2397471914
Copyright
© 2008. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.