Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The application of emerging technologies, such as Artificial Intelligence (AI), entails risks that need to be addressed to ensure secure and trustworthy socio-technical infrastructures. Machine Learning (ML), the most developed subfield of AI, allows for improved decision-making processes. However, ML models exhibit specific vulnerabilities that conventional IT systems are not subject to. As systems incorporating ML components become increasingly pervasive, the need to provide security practitioners with threat modeling tailored to the specific AI-ML pipeline is of paramount importance. Currently, there exist no well-established approach accounting for the entire ML life-cycle in the identification and analysis of threats targeting ML techniques. In this paper, we propose an asset-centered methodology—STRIDE-AI—for assessing the security of AI-ML-based systems. We discuss how to apply the FMEA process to identify how assets generated and used at different stages of the ML life-cycle may fail. By adapting Microsoft’s STRIDE approach to the AI-ML domain, we map potential ML failure modes to threats and security properties these threats may endanger. The proposed methodology can assist ML practitioners in choosing the most effective security controls to protect ML assets. We illustrate STRIDE-AI with the help of a real-world use case selected from the TOREADOR H2020 project.

Details

Title
Modeling Threats to AI-ML Systems Using STRIDE
Author
Mauri, Lara 1   VIAFID ORCID Logo  ; Damiani, Ernesto 2   VIAFID ORCID Logo 

 Department of Computer Science, Università Degli Studi di Milano, 20133 Milan, Italy 
 Department of Computer Science, Università Degli Studi di Milano, 20133 Milan, Italy; Center for Cyber-Physical Systems, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates 
First page
6662
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2711500988
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.