Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Aquaponics is a green and efficient agricultural production model that combines aquaculture and vegetable cultivation. It is worth looking into optimizing the proportion of fish and plants to improve the quality and yield. However, there is little non-destructive monitoring of plant growth in aquaponics monitoring systems currently. In this paper, based on the Internet of Things technologies, a monitoring system is designed with miniaturization, modularization, and low-cost features for cultivation-breeding ratio research. The system can realize remote monitoring and intelligent control of parameters needed to keep fish and plants under optimal conditions. First, a 32-bit chip is used as the Microcontroller Unit to develop the intelligent sensing unit, which can realize 16 different data acquisitions as stand-alone extensible modules. Second, to achieve plant data acquisition and upload, the Raspberry Pi embedded with image processing algorithms is introduced to realize edge-computing. Finally, all the collected data is stored in the Ali-cloud through Wi-Fi and a WeChat Mini Program is designed to display data and control devices. The results show that there is no packet loss within 90 m for wireless transmission, and the error rate of environment parameters is limited to 5%. It was proven that the system is intelligent, flexible, low-cost, and stable which is suitable for small-scale aquaponics well.

Details

Title
A Modularized IoT Monitoring System with Edge-Computing for Aquaponics
Author
Wan, Shiqi 1 ; Zhao, Kexin 1 ; Lu, Zhongling 1 ; Li, Jianke 2 ; Lu, Tiangang 3 ; Wang, Haihua 1 

 College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China; National Digital Fisheries Innovation Center, Beijing 100083, China 
 College of Information Technology, Hebei University of Economics and Business, Shijiazhuang 050062, China 
 Information Center, Beijing Municipal Bureau of Agriculture and Rural Development, Beijing 100101, China 
First page
9260
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2748560758
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.