It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The neuronal regulation of metabolic and behavioral responses to different diets and feeding regimens is an important research area. Herein, we investigated if the opioid peptide dynorphin modulates feeding behavior and metabolism. Mice lacking dynorphin peptides (KO) were exposed to either a normal diet (ND) or a high-fat diet (HFD) for a period of 12 weeks. Additionally, mice had either time-restricted (TR) or ad libitum (AL) access to food. Body weight, food intake and blood glucose levels were monitored throughout the 12-week feeding schedule. Brain samples were analyzed by immunohistochemistry to detect changes in the expression levels of hypothalamic peptides. As expected, animals on HFD or having AL access to food gained more weight than mice on ND or having TR access. Unexpectedly, KO females on TR HFD as well as KO males on AL ND or AL HFD demonstrated a significantly increased body weight gain compared to the respective WT groups. The calorie intake differed only marginally between the genotypes: a significant difference was present in the female ND AL group, where dynorphin KO mice ate more than WT mice. Although female KO mice on a TR feeding regimen consumed a similar amount of food as WT controls, they displayed significantly higher levels of blood glucose. We observed significantly reduced levels of hypothalamic orexigenic peptides neuropeptide Y (NPY) and orexin-A in KO mice. This decrease became particularly pronounced in the HFD groups and under AL condition. The kappa opiod receptor (KOR) levels were higher after HFD compared to ND feeding in the ventral pallidum of WT mice. We hypothesize that HFD enhances dynorphin signaling in this hedonic center to maintain energy homeostasis, therefore KO mice have a more pronounced phenotype in the HFD condition due to the lack of it. Our data suggest that dynorphin modulates metabolic changes associated with TR feeding regimen and HFD consumption. We conclude that the lack of dynorphin causes uncoupling between energy intake and body weight gain in mice; KO mice maintained on HFD become overweight despite their normal food intake. Thus, using kappa opioid receptor agonists against obesity could be considered as a potential treatment strategy.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 University of Bonn, Medical Faculty, Institute of Molecular Psychiatry, Bonn, Germany (GRID:grid.10388.32) (ISNI:0000 0001 2240 3300)
2 University of Bonn, Medical Faculty, Institute of Molecular Psychiatry, Bonn, Germany (GRID:grid.10388.32) (ISNI:0000 0001 2240 3300); Medical Faculty, Department of Neurodegenerative Diseases & Geriatric Psychiatry University of Bonn, Bonn, Germany (GRID:grid.10388.32) (ISNI:0000 0001 2240 3300)
3 University of Bonn, Medical Faculty, Institute of Molecular Psychiatry, Bonn, Germany (GRID:grid.10388.32) (ISNI:0000 0001 2240 3300); Aarhus University, Department of Biomedicine/DANDRITE Capogna group, Aarhus C, Denmark (GRID:grid.7048.b) (ISNI:0000 0001 1956 2722)