Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

A new type of P91 heat-resistant pipeline steel ingot was prepared by feeding Al twisted wire into a steel melt through a multi-point regional micro-supply method, combined with electromagnetic stirring. The type, shape, and size of inclusions in the new P91 steel after forging were then analyzed by scanning electron microscope (SEM), energy dispersive spectroscopy (EDS), and transmission electron microscope (TEM). The results showed that four types of inclusions were detected in the P91 steel, including: spherical independent Al2O3 inclusions, irregular Al2O3-SiO2 composite inclusions, nearly spherical MgO-Al2O3 composite inclusions, and spherical (Ca, Mg, Al) (O) composite inclusions. Compared with traditional P91 steel, the inclusions in the new P91 steel were significantly refined. Refining mechanisms of inclusion showed that Al2O3 oxide particles distributed dispersedly with fine sizes could be obtained through a multi-point regional micro-supply method. Further, Al2O3 particles act as the nucleation core to form a “core-shell” structure and play the role of a heterogeneous nucleation to refine SiO2, MgO, (Ca, Mg) (O), and other inclusions in the steel.

Details

Title
Morphology of Inclusions and Its Refinement Mechanism in the New P91 Heat-Resistant Pipeline Steel
Author
Chen, Xiaohua 1 ; Liang, Shenghui 2 ; Wang, Yanlin 2 ; Wang, Zidong 3 ; Fan, Weijie 1 ; Yu, Xinning 1 ; Yang, Jian 2 

 State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China 
 School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China 
 State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China; School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China 
First page
1556
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20754701
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2728510914
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.