Full Text

Turn on search term navigation

Copyright © 2017 Yizhong Yang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Moving object detection in video streams is the first step of many computer vision applications. Background modeling and subtraction for moving detection is the most common technique for detecting, while how to detect moving objects correctly is still a challenge. Some methods initialize the background model at each pixel in the first N frames. However, it cannot perform well in dynamic background scenes since the background model only contains temporal features. Herein, a novel pixelwise and nonparametric moving object detection method is proposed, which contains both spatial and temporal features. The proposed method can accurately detect the dynamic background. Additionally, several new mechanisms are also proposed to maintain and update the background model. The experimental results based on image sequences in public datasets show that the proposed method provides the robustness and effectiveness in dynamic background scenes compared with the existing methods.

Details

Title
Moving Object Detection for Dynamic Background Scenes Based on Spatiotemporal Model
Author
Yang, Yizhong; Zhang, Qiang; Wang, Pengfei; Hu, Xionglou; Wu, Nengju
Publication year
2017
Publication date
2017
Publisher
John Wiley & Sons, Inc.
ISSN
16875680
e-ISSN
16875699
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1915243715
Copyright
Copyright © 2017 Yizhong Yang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.