It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
We demonstrate the enhancement of intestinal mucin (Muc2) binding to plant cell wall structures from fruit (parenchymal apple tissue) and grain (wheat endosperm) mediated by soluble dietary fibers embedded within cellulose networks. Mucin binding occurs through two distinct mechanisms; for pectin polysaccharides characteristic of fruits and vegetables, it is governed by molecular mucoadhesive interactions, while for neutral polysaccharides, arabinoxylan and β-glucan characteristic of cereal grains, the interaction stems from the properties of their polymer network. Based on microrheological and microscopic measurements, we show that neutral dietary fiber polysaccharides do not adhere to intestinal mucin, but are capable of disrupting the mucin network, which facilitates interpenetration of mucin molecules into the polysaccharide mesh. This effect becomes significant in the context of ‘whole foods’, where soluble fibers are incorporated within the gel-like matrix of cellulose-reinforced plant cell wall structures. The result of mucoadhesion assay and analysis of microscopy images points to the critical role of entanglements between mucin and polysaccharides as a lock-in mechanism preventing larger mucin from escaping out of plant cell wall structures. These results provide the first indication that non-pectin soluble dietary fiber may influence mucosal interactions, mucus barrier properties, and transmucosal transport of nutrients.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details



1 ARC Centre of Excellence in Plant Cell Walls, The University of Queensland, St Lucia, Qld, Australia; Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, Qld, Australia
2 ARC Centre of Excellence in Plant Cell Walls, The University of Queensland, St Lucia, Qld, Australia; School of Chemical Engineering, The University of Queensland, St Lucia, Qld, Australia
3 Chronic Disease Biology and Care Program, Mater Research Institute - The University of Queensland, Translational Research Institute, Woolloongabba, Qld, Australia