Full Text

Turn on search term navigation

© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

We propose a multiple global navigation satellite system (multi-GNSS) differential phase kinematic post-processing method, expand the current Track ability, and finely tune processing parameters to achieve the best results for research purposes. The double-difference (DD) phase formulas of GLONASS are especially formulated, and the method of arc ambiguity resolution (AR) in post-processing is developed. To verify the feasibility of this AR method, a group of static baselines with ranges from 8 m to 100 km and two kinematic tests were used. The results imply that 100% of ambiguities in short baselines and over 90% in long baselines can be fixed with the proposed ambiguity resolution method. Better than a 10-mm positioning precision was achieved for all the horizonal components of those selected baselines and the vertical components of the short baselines, and the vertical precision for long baselines is around 20 to 40 mm. In the posterior residual analysis, the means of the residual root-mean-squares (RMSs) of different systems are better than 10 mm for short baselines and at the range of 10–20 mm for baselines longer than 80 km. Mostly, the residuals satisfy the standard normal distribution. It proves that the new method could be applied in bridge displacement and vibration monitoring and for UAV photogrammetry.

Details

Title
A Multi-GNSS Differential Phase Kinematic Post-Processing Method
Author
Xi, Ruijie  VIAFID ORCID Logo  ; Chen, Qusen  VIAFID ORCID Logo  ; Meng, Xiaolin  VIAFID ORCID Logo  ; Jiang, Weiping; An, Xiangdong  VIAFID ORCID Logo  ; He, Qiyi  VIAFID ORCID Logo 
First page
2727
Publication year
2020
Publication date
2020
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2438163660
Copyright
© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.