Full Text

Turn on search term navigation

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In this paper, an improved multi-objective shark smell optimization algorithm using composite angle cosine is proposed for automatic train operation (ATO). Specifically, when solving the problem that the automatic train operation velocity trajectory optimization easily falls into local optimum, the shark smell optimization algorithm with strong searching ability is adopted, and composite angle cosine is incorporated. In addition, the dual-population evolution mechanism is adopted to restrain the aggregation phenomenon in shark population at the end of the iteration to suppress the local convergence. Correspondingly, the composite angle cosine, considering the numerical difference and preference difference, is used as the evaluation index, which ameliorates the shortcoming that the traditional evaluation index is not objective and reasonable. Finally, the Matlab/simulation and hardware-in-the-loop simulation (HILS) results for automatic train operation show that the improved optimization algorithm proposed in this paper has better optimization performance.

Details

Title
Multi-Objective Shark Smell Optimization Algorithm Using Incorporated Composite Angle Cosine for Automatic Train Operation
Author
Wang, Longda 1   VIAFID ORCID Logo  ; Wang, Xingcheng 1 ; Zhao, Sheng 2 ; Lu, Senkui 1 

 School of Marine Electrical Engineering, Dalian Maritime University, Dalian 116026, China; [email protected] (L.W.); [email protected] (S.L.) 
 School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing 100044, China; [email protected] 
First page
714
Publication year
2020
Publication date
2020
Publisher
MDPI AG
e-ISSN
19961073
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2422315330
Copyright
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.