Content area
Full Text
Received Jun 4, 2017; Revised Jul 31, 2017; Accepted Aug 3, 2017
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
1. Introduction
In the future, air-to-ground attack and target indication will be important tasks for UAVs, and targets localization accuracy is the key factor to influence whether UAVs can accomplish these tasks or not. Currently, the single station targeting method is often used by UAVs, but multi-UAVs cooperative positioning can improve localization accuracy. Communication is the basis of multi-UAVs cooperative positioning. However, there always are some communication latency and information packet loss when UAVs communicate with each other, and these communication restrictions may have negative effect on multi-UAVs cooperative localization.
In order to eliminate the negative effects of communication delay and packet loss, it is necessary to present some information fusion mechanisms to improve multi-UAVs cooperative positioning accuracy. A kind of suboptimal fusion estimation method is proposed in [1] to resolve the random packet loss problem of centralized multiple sensors information fusion. Literature [2] proposed a method of optimal estimation to resolve the problem of random communication latency packet loss. Literature [3] presents a three-period distributed Kalman fusion estimation strategy for wireless sensor networks random packet losses problem. Literature [4] is concerned with the distributed fusion estimation problem for discrete-time stochastic linear system with multiple delay. Literature [5] uses a predicted modal to describe communication latency, and a kind of suboptimal H-filter is designed. A kind of centralized H-filter is designed to resolve fusion problem with communication latency, data out-of-order, and packet loss in [6].
All this work is based on the fact that there was prior information about communication delay and packet loss. But in most situations, it is hard to get this information in advance. Two methods are proposed to describe communication latency and packet loss. One is Markov chain in [7]; the other is random variable with Bernoulli distribution in...