Full Text

Turn on search term navigation

© 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Continuous monitoring systems have been regarded as a very useful tool to provide continuous high-frequency measurements of many parameters. Here, we analyze high-frequency time series of air temperature measurements, recorded every 10 min during 2003 in Athens (Greece) by an online monitoring system for the urban environment. We propose a set of time series analysis techniques, where missing data are well respected and information concerning the system’s dynamics is preserved. A power spectral density analysis is performed over time scales spanning from 10 min to several days. A scale-invariant behavior of the formE(f)≈f−βis revealed for scales below 9 h. Over this scaling range, we have performed structure functions analysis, and shown that air temperature data exhibit turbulent-like intermittent properties with multi-fractal statistics. The multifractal exponents obtained possess some similarities with passive scalar turbulence results. Although we illustrate the proposed approach using air temperature data, the method can be used as an efficient tool to analyse other environmental parameters monitored in urban environment.

Details

Title
Multifractal Analysis of High-Frequency Temperature Time Series in the Urban Environment
Author
Karatasou, Stavroula; Santamouris, Mat
Publication year
2018
Publication date
Jun 2018
Publisher
MDPI AG
e-ISSN
22251154
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2126926828
Copyright
© 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.