Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

EEG-based emotion recognition has become an important part of human–computer interaction. To solve the problem that single-modal features are not complete enough, in this paper, we propose a multimodal emotion recognition method based on the attention recurrent graph convolutional neural network, which is represented by Mul-AT-RGCN. The method explores the relationship between multiple-modal feature channels of EEG and peripheral physiological signals, converts one-dimensional sequence features into two-dimensional map features for modeling, and then extracts spatiotemporal and frequency–space features from the obtained multimodal features. These two types of features are input into a recurrent graph convolutional network with a convolutional block attention module for deep semantic feature extraction and sentiment classification. To reduce the differences between subjects, a domain adaptation module is also introduced to the cross-subject experimental verification. This proposed method performs feature learning in three dimensions of time, space, and frequency by excavating the complementary relationship of different modal data so that the learned deep emotion-related features are more discriminative. The proposed method was tested on the DEAP, a multimodal dataset, and the average classification accuracies of valence and arousal within subjects reached 93.19% and 91.82%, respectively, which were improved by 5.1% and 4.69%, respectively, compared with the only EEG modality and were also superior to the most-current methods. The cross-subject experiment also obtained better classification accuracies, which verifies the effectiveness of the proposed method in multimodal EEG emotion recognition.

Details

Title
Multimodal EEG Emotion Recognition Based on the Attention Recurrent Graph Convolutional Network
Author
Chen, Jingxia; Liu, Yang; Xue, Wen; Hu, Kailei; Lin, Wentao
First page
550
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20782489
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2748288721
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.