Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

On 20 July 2021, an extraordinary rainfall event occurred in Henan Province, China, resulting in heavy waterlogging, flooding, and hundreds of fatalities and causing considerable property damage. Because the damaged region was a major grain-producing region of China, assessing crop food production losses following this event is very important. Because the crop rotation production system is utilized in the region to accommodate two crops per year, it is very valuable to accurately identify the types of crops affected by the event and to assess the crop production losses separately; however, the results obtained using these methods are still inadequate. In this study, we used China’s first commercial synthetic aperture radar (SAR) data source, named Hisea-1, together with other open-source and widely used remote sensing data (Sentinel-1 and Sentinel 2), to monitor this catastrophic flood. Both the modified normalized difference water index (MNDWI) and Sentinel-1 dual-polarized water index (SDWI) were calculated, and an unsupervised classification (k-means) method was adopted for rapid water body extraction. Based on time-series datasets synthesized from multiple sources, we obtained four flooding characteristics, including the flooded area, flood duration, and start and end times of flooding. Then, according to these characteristics, we conducted a more precise analysis of the damages to flooded farmlands. We used the Google Earth Engine (GEE) platform to obtain normalized difference vegetation index (NDVI) time-series data for the disaster year and normal years and overlaid the flooded areas to extract the effects of flooding on crop species. According to the statistics from previous years, we calculated the areas and types of damaged crops and the yield reduction amounts. Our results showed that (1) the study area endured two floods in July and September of 2021; (2) the maximum areas affected by these two flooding events were 380.2 km2 and 215.6 km2, respectively; (3) the floods significantly affected winter wheat and summer grain (maize or soybean), affecting areas of 106.4 km2 and 263.3 km2, respectively; and (4) the crop production reductions in the affected area were 18,708 t for winter wheat and 160,000 t for maize or soybean. These findings indicate that the temporal-dimension information, as opposed to the traditional use of the affected area and the yield per unit area when estimating food losses, is very important for accurately estimating damaged crop types and yield reductions. Time-series remote sensing data, especially SAR remote sensing data, which have the advantage of penetrating clouds and rain, play an important role in remotely sensed disaster monitoring. Hisea-1 data, with a high spatial resolution and first flood-monitoring capabilities, show their value in this study and have the potential for increased usage in further studies, such as urban flooding research. As such, the approach proposed herein is worth expanding to other applications, such as studies of water resource management and lake/wetland hydrological changes.

Details

Title
Multisource Remote Sensing Data-Based Flood Monitoring and Crop Damage Assessment: A Case Study on the 20 July 2021 Extraordinary Rainfall Event in Henan, China
Author
Zhang, Minghui 1 ; Liu, Di 1 ; Wang, Siyuan 1 ; Xiang, Haibing 2 ; Zhang, Wenxiu 1 

 State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China 
 Key Laboratory of Aperture Array and Space Application, No. 38 Research Institute of CETC, Hefei 230088, China 
First page
5771
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2739456209
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.