Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Solid oxide cells (SOCs) are attracting much more attention as promising energy conversion and storage devices. One of the challenges of optimizing of solid-oxide cells’ performance is that there are not enough triple-phase boundaries (TPB) in the electrode bulk. To enhance the reaction area for SOCs, Sr2Fe1.5Mo0.5O6-δ nanofibers are synthesized by electrospinning with metal nitrate precursors and used for SOC electrodes operated in both humidified air and a hydrogen atmosphere. SFMO nanofibers display a highly porous and crystallized perovskite structure and continuous pathways by XRD analysis and SEM observation. The average diameter of the SFMO nanofibers after sintering is about 100 nm. The La0.8Sr0.2Ga0.8Mg0.2O3-δ(LSGM) electrolyte-supported symmetrical cell with the SFMO nanofiber electrode exhibits enhanced electrochemical performance in humidified air and an H2 atmosphere. Moreover, a distribution of the relaxation time method is used to analyze the impedance spectra, and the polarization peaks observed are assigned to correspond different electrochemical processes. The results indicate that the SFMO nanofiber with an improved nanostructure can be the potential material for the SOC electrode.

Details

Title
Nanofiber Sr2Fe1.5Mo0.5O6-δ Electrodes Fabricated by the Electrospinning Method for Solid-Oxide Cells
Author
Zhang, Bo 1 ; Leng, Zhizhong 1 ; Ling, Yihan 2 ; Hu, Bai 1 ; Li, Sha 1 ; Zhou, Juan 1   VIAFID ORCID Logo  ; Wang, Shaorong 2 

 School of Energy and Power Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing 210094, China 
 School of Chemistry and Chemical Engineering, China University of Mining and Technology, 1 Daxue Street, Xuzhou 221116, China 
First page
1624
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20734352
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2748277841
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.