It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
This paper describes the methods used in the submission for team Shawn for the data science competition “Airborne Remote Sensing to Ecological Information”. I used canopy height rasters as well as NDVI rasters of the study area. I first filtered out pixels using a minimum NDVI threshold, then derived individual tree crowns using a watershed algorithm. I imposed limits on tree crown size and number using a minimum distance between two crowns and a maximum crown radius. All parameters were derived by minimizing the Jaccard coefficient. The final Jaccard coefficient on the training data was 0.117. All methods were implemented in Python are are available in code repositories.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer