It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The nested distance builds on the Wasserstein distance to quantify the difference of stochastic processes, including also the evolution of information modelled by filtrations. The Sinkhorn divergence is a relaxation of the Wasserstein distance, which can be computed considerably faster. For this reason we employ the Sinkhorn divergence and take advantage of the related (fixed point) iteration algorithm. Furthermore, we investigate the transition of the entropy throughout the stages of the stochastic process and provide an entropy-regularized nested distance formulation, including a characterization of its dual. Numerical experiments affirm the computational advantage and supremacy.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer