Full Text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In this paper, dicyandiamide (Dd) and p-benzaldehyde (Bd) were heated at 180 °C for 3 h to prepare a new type of stable covalent organic framework (COF) DdBd nanosol with high catalysis. It was characterized by molecular spectroscopy and electron microscopy. The study found that DdBd had a strong catalytic effect on the new indicator reaction of polyethylene glycol 600 (PEG600)-chloroauric acid to form gold nanoparticles (AuNPs). AuNPs have strong resonance Rayleigh scattering (RRS) activity, and in the presence of Victoria Blue B (VBB) molecular probes, they also have a strong surface-enhanced Raman scattering (SERS) effect. Combined with a highly selective oxytetracycline (OTC) aptamer (Apt) reaction, new dual-mode scattering SERS/RRS methods were developed to quantitatively analyze ultratrace OTC. The linear range of RRS is 3.00 × 10−3 –6.00 × 10−2 nmol/L, the detection limit is 1.1 × 10−3 nmol/L, the linear range of SERS is 3.00 × 10−3–7.00 × 10−2 nmol/L, and the detection limit is 9.0 × 10−4 nmol/L. Using the SERS method to analyze OTC in soil samples, the relative standard deviation is 1.35–4.78%, and the recovery rate is 94.3–104.9%.

Details

Title
A New Covalent Organic Framework of Dicyandiamide-Benzaldehyde Nanocatalytic Amplification SERS/RRS Aptamer Assay for Ultratrace Oxytetracycline with the Nanogold Indicator Reaction of Polyethylene Glycol 600
Author
Liang, Aihui 1 ; Shengfu Zhi 1 ; Liu, Qiwen 1 ; Li, Chongning 1 ; Jiang, Zhiliang 1   VIAFID ORCID Logo 

 Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541004, China; [email protected] (A.L.); [email protected] (S.Z.); [email protected] (Q.L.); [email protected] (C.L.); Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin 541004, China 
First page
458
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
20796374
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2602000964
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.