Full Text

Turn on search term navigation

© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The Global Navigation Satellite System (GNSS) tomographic technique can be used for remote sensing of the three-dimensional water vapor (WV) distribution in the troposphere, which has attracted considerable interest. However, a significant problem in this technique is the excessive reliance on constraints (particularly in large GNSS networks). In this paper, we propose an improved tomographic method based on optimized voxel, which only considers the voxels passed by GNSS rays. The proposed method can completely prevent the tomographic algorithm interference of constraints that originated from empirical functions. Experiments in Nanjing in the periods of day-of-year (DOY) 182–184, 2019, and 244–246, 2019, show that the mean absolute error (MAE) and root mean square error (RMSE) of the WV density profile obtained using the proposed method are 0.9 and 1.3 g/m3, while those obtained using the conventional method are 1.3 and 1.8 g/m3, respectively, with respect to the radiosonde (RS) method. The numerical results show that the proposed method is reliable and has a superior accuracy to that of the conventional method.

Details

Title
A New GNSS-Derived Water Vapor Tomography Method Based on Optimized Voxel for Large GNSS Network
Author
Yao, Yibin  VIAFID ORCID Logo  ; Liu, Chen; Xu, Chaoqian
First page
2306
Publication year
2020
Publication date
2020
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2425912039
Copyright
© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.