It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Artificial bee colony algorithm (ABC) and particle swarm optimization (PSO) are both famous optimization algorithms that have been successfully applied to various optimization problems, especially in function optimization. Those two algorithms have been attracting more and more research interest because of their efficiency and simplicity. However, PSO has poor exploration capabilities and thus is easy to fall into the local optimum; Likewise, ABC has low convergence speed. To address these shortcomings, firstly, we improved the ABC with the combination of greedy selection and crossover, secondly, a sine-cosine method will be used to help PSO jump into local optimal. Finally, a new hybrid algorithm based on improved ABC and PSO are proposed. Moreover, four functions are used to verify the effectiveness of the proposed algorithm, and the results show that, compared with other well-known algorithms, ABC-PSO is more efficient, faster and more robust in function optimization.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 College of Information Science and Engineering, Jishou University, Jishou, Hunan, China
2 UTM Big Data Centre, Ibnu Sina Institute for Scientific and Industrial Research, University Teknologi Malaysia, Johor, Malaysia