You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
© 2018. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Abstract
Multiple processes are involved in modulating the El Niño-Southern Oscillation (ENSO) in the tropical Pacific, and these processes are neither well-represented nor well-understood in climate models. A new hybrid coupled model (HCM) of atmosphere, ocean physics, and ocean biogeochemistry (AOPB) is developed to represent the feedback from ocean biogeochemistry onto ocean physics via modulating the penetration of shortwave radiation in the upper ocean. An ocean biogeochemistry model is coupled with a simplified ocean-atmosphere system consisting of an ocean general circulation model (OGCM) and a statistical atmospheric model for interannual anomalies of wind stress (τ). The HCM AOPB serves as a simple Earth system for the tropical Pacific to represent the coupling among the atmospheric and physical and biogeochemical ocean components. Model experiments are performed to illustrate this new model's ability to depict the mean ocean state and interannual variability associated with the ENSO. The relationships among anomaly fields are analyzed to illustrate the ocean biogeochemistry-induced heating feedback and its modulating effects on the ENSO, which is characterized by a negative feedback. The underlying processes and mechanisms are analyzed and can be attributed to dominant modulation of the penetrative solar radiation through the base of the mixed layer (ML). It is demonstrated that the ocean biogeochemistry-induced negative feedback is mainly driven by more solar radiation penetrating out of the ML during El Nino and less penetrating during La Nina. Further model applications to studies on these processes and biogeochemical-physical interactions are discussed.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details



1 Key Laboratory of Ocean Circulation and Waves, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China
2 Key Laboratory of Ocean Circulation and Waves, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China
3 College of Global Change and Earth System Science, Joint Center for Global Change Studies, Beijing Normal University, Beijing, China