Full Text

Turn on search term navigation

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Magnolia × soulangeana ‘Changchun’ are trees that bloom in spring and summer respectively after flower bud differentiation. Here, we use phenological and morphological observation and RNA-seq technology to study the molecular basis of flowering initiation in ‘Changchun’. During the process of flowering initiation in spring and summer, the growth of expanded flower buds increased significantly, and their shape was obviously enlarged, which indicated that flowering was initiated. A total of 168,120 expressed genes were identified in spring and summer dormant and expanded flower buds, of which 11,687 genes showed significantly differential expression between spring and summer dormant and expanded flower buds. These differentially expressed genes (DEGs) were mainly involved in plant hormone signal transduction, metabolic processes, cellular components, binding, and catalytic activity. Analysis of differential gene expression patterns revealed that gibberellin signaling, and some transcription factors were closely involved in the regulation of spring and summer flowering initiation in ‘Changchun’. A qRT-PCR (quantitative Real Time Polymerase Chain Reaction) analysis showed that BGISEQ-500 sequencing platform could truly reflect gene expression patterns. It also verified that GID1B (GIBBERELLIN INSENSITIVE DWARF1 B), GID1C, SPL8 (SQUAMOSA PROMOTER BINDING PROTEIN-LIKE 8), and GASA (GIBBERELLIC ACID-STIMULATED ARABIDOPSIS) family genes were expressed at high levels, while the expression of SPY (SPINDLY) was low during spring and summer flowering initiation. Meanwhile, the up- and down-regulated expression of, respectively, AGL6 (AGAMOUS-LIKE 6) and DREB3 (DEHYDRATION-RESPONSIVE ELEMENT-BINDING PROTEIN 3), AG15, and CDF1 (CYCLIC DOF FACTOR 1) might also be involved in the specific regulation of spring and summer flowering initiation. Obviously, flowering initiation is an important stage of the flowering process in woody plants, involving the specific regulation of relevant genes and transcription factors. This study provides a new perspective for the regulation of the flowering process in perennial woody plants.

Details

Title
A New Insight into Flowering Regulation: Molecular Basis of Flowering Initiation in Magnolia × soulangeana ‘Changchun’
Author
Jiang, Zheng 1 ; Sun, Liyong 1 ; Wei, Qiang 2 ; Ye Ju 1 ; Zou, Xuan 1 ; Wan, Xiaoxia 1 ; Liu, Xu 1 ; Yin, Zengfang 1   VIAFID ORCID Logo 

 Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; [email protected] (Z.J.); [email protected] (L.S.); [email protected] (Y.J.); [email protected] (X.Z.); [email protected] (X.W.); [email protected] (X.L.) 
 Bamboo Research Institute, Nanjing Forestry University, Nanjing 210037, China; [email protected] 
First page
15
Publication year
2020
Publication date
2020
Publisher
MDPI AG
e-ISSN
20734425
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2548494282
Copyright
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.