Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In addition to elastomeric devices, viscous fluid dampers can reduce the vibration transmitted to dynamic systems. Usually, these fluid dampers are rate-independent and used in conjunction with elastomeric isolators to insulate the base of buildings (buildings, bridges, etc.) to reduce the shocks caused by earthquakes by increasing the damping capability. According to the EN 15129 standard, the velocity-dependent anti-seismic devices are Fluid Viscous Dampers (FVDs) and Fluid Spring Dampers (FSDs). Based on experimental data from a dynamic regime of a fluid viscous damper of small dimensions, for which not all the design details are known, to determine the law of behavior for the viscous damper, the characteristics of the damper are identified, including the nonlinear parameter α (exponent of velocity V) of the constitutive law. Note that the magnitude of the fluid damper force depends on both velocity (where the maximum value is 0.52 m/s) and amplitude displacement (±25 mm). Using the Kelvin–Voigt rheological models, the dynamic response of a structure fixed with a fluid viscous device is analyzed, presenting the reaction force and displacement during the parameterized application of an external shock. This new approach for FVDs/FSDs was validated using the standard deviation between the experimental data and the numerical results of the extended Kelvin–Voigt model offering researchers in the field of seismic devices a reliable method to obtain a constitutive law for such devices.

Details

Title
A New Modeling Approach for Viscous Dampers Using an Extended Kelvin–Voigt Rheological Model Based on the Identification of the Constitutive Law’s Parameters
Author
Vasile, Ovidiu  VIAFID ORCID Logo  ; Bugaru, Mihai  VIAFID ORCID Logo 
First page
3
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20793197
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2767196552
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.