Full text

Turn on search term navigation

Copyright Nature Publishing Group Jun 2016

Abstract

Highly active and low-cost electrocatalysts for water oxidation are required due to the demands on sustainable solar fuels; however, developing highly efficient catalysts to meet industrial requirements remains a challenge. Herein, we report a monolayer of nickel-vanadium-layered double hydroxide that shows a current density of 27 mA cm-2 (57 mA cm-2 after ohmic-drop correction) at an overpotential of 350 mV for water oxidation. Such performance is comparable to those of the best-performing nickel-iron-layered double hydroxides for water oxidation in alkaline media. Mechanistic studies indicate that the nickel-vanadium-layered double hydroxides can provide high intrinsic catalytic activity, mainly due to enhanced conductivity, facile electron transfer and abundant active sites. This work may expand the scope of cost-effective electrocatalysts for water splitting.

Details

Title
Nickel-vanadium monolayer double hydroxide for efficient electrochemical water oxidation
Author
Fan, Ke; Chen, Hong; Ji, Yongfei; Huang, Hui; Claesson, Per Martin; Daniel, Quentin; Philippe, Bertrand; Rensmo, Håkan; Li, Fusheng; Luo, Yi; Sun, Licheng
Pages
11981
Publication year
2016
Publication date
Jun 2016
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1797271574
Copyright
Copyright Nature Publishing Group Jun 2016