This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
1. Introduction
It is crucial to depict the underlying geological structures using the information contained in the seismic data acquired through the use of various sensing equipment and networks [1–7]. However, the reliability of seismic analysis is degenerated due to the random noise in seismic data. Hence, noise attenuation plays a critical role in improving signal-to-noise ratio (SNR) for geological interpretation based on seismic data.
In recent years, with the gradual extension of the field of seismic exploration, the deepening of exploration depth, and the increasingly complex exploration environment, the noise also increases significantly and can be more complex. This will hinder the realization of high-precision seismic exploration. So, remarkably improving the SNR becomes the most important and basic task. However, conventional seismic data denoising methods are difficult to satisfy the demands of high-precision seismic exploration. Therefore, it is urgent to develop a more effective new technique.
Up to now, many noise attenuation methods have been developed. The popular sparse representation of seismic data exploits the domain transform technology to denoise [8–15]. Learning-based methods [16, 17] are another type of effective methods, wherein a set of examples are used to generate an overcomplete dictionary, generally an explicit matrix. Recently, deep learning (DL) has become a research focus due to its advantages compared with traditional learning. DL-based convolutional neutral networks (CNNs) [18–29] are intensively adapted to process tremendous multimedia problems with impressive results.
In the present work, a noise attenuation method of seismic data via a novel deep learning architecture is proposed. Our contributions in this paper are threefold:
(i) We propose MSF block to adaptively exploit local signal features at different scales from seismic data
(ii) A series of stacked MSF blocks are formed into MSFN, which can restore the noisy seismic data effectively and preserve more useful signal information
(iii) The superior of our method over other leading-edge methods is demonstrated with the synthetic seismic records, SEG/EAGE salt and overthrust models, and real seismic data
The remainder of the paper is structured as below. Section 2 reviews related work. Section 4 presents a detailed description of the suggested scheme, and Section 5 validates the proposed method. Finally, the conclusions of this paper are summarized in Section 5.
2. Related Work
At present, numerous seismic denoising approaches [8–17, 30–33] including some new methods [10, 13, 29] have been suggested. Actually, seismic random noise, which penetrates the whole time domain, is the most common in all types of noise for seismic data. And it can seriously interfere with effective seismic signals, thus resulting signal perturbation. Various effective random noise attenuation approaches, e.g., the empirical mode decomposition- (EMD-) based methods and the sparse transform-based approaches have been proposed on the basis of the initial denoising method developed by Canales [26]. Chen and Ma [32] proposed to use f-x EMD predictive filtering to remove the random noise. Liu et al. [33] presented a random noise attenuation method based on variational mode decomposition to perform seismic time-frequency analysis. Chen and Fomel [12] suggested a novel random noise attenuation method based on an EMD-seislet transform. Neelamani et al. [9] presented a coherent and random noise attenuation method based on the curvelet transform. Zhang and Lu [8] proposed a wavelet transform-based denoising approach and achieved improved resolution of seismic data. Subsequently, some improved and/or combined transform domain based methods were proposed [8–15], which achieves good results.
Compared with conventional superresolution (SR) methods, the CNN-based schemes from the first SRCNN [18] to the latest feedback network [29] can remarkably improve the SR quality. The shallow structure of SRCNN limits its performance. To overcome this drawback, deepening structures were adopted in networks. For example, a deeper structure was used in the VDSR model proposed by Kim et al. [20]. Several new very deep models, e.g., RCAN [21], achieved outstanding SR performance. Besides, dense connections integrated SR models, e.g., SRDenseNet [23] and MemNet [25], displayed a better resolution. Moreover, by connecting all the same signal feature extraction (SFE) modules in the entire network, the efficiency of the constructed SR methods based on CNNs, e.g., RDN [26], IDN [27], MSRN [28], and SRFBN [29], could be increased, indicating each block was crucial.
3. Proposed Method
This section presents the network architecture of a novel seismic data denoising method (MSFN). The structure has two parts, namely, a shallow signal feature extraction (SSFE) and a deep signal feature extraction (DSFE) module, as shown in Figure 1. Let us denote the clean data and the noised data by
[figure omitted; refer to PDF]
The mean square error (MSE) function [26] and L2 function are the two most popular objective optimization functions in image SR. Due to the excessively smooth textures in the solutions of the MSE and L2 optimization problems, we found marginal performance improvement could be obtained, except for their high PSNR/SSIM. Besides, training with MSE loss was not a good option according to the experiment by Lim et al. [23]. To reduce computations and avoid introducing unnecessary training tricks, as a better alternative, a mean absolute error (MAE) function
Figure 2 shows the proposed MSF block. A three-bypass network with various convolutional kernels for each pass is constructed in each MSF block. So that, the signal features at different scales can be detected because the information can be shared between these bypasses. According to [18], we define the operation as follows:
4. Experimental Results
The qualitative and quantitative experiments are conducted to evaluate the performance of our method. In this work, three traditional seismic denoising methods (wavelet-based threshold denoising (WTD), curvelet-based threshold denoising (CTD), and shearlet-based threshold denoising (STD)) and one deep learning-based method (information distillation network (IDN) [27]) are selected for the comparative study.
The basic data can be synthesized with 24 seismic records including linear, curvilinear, fault, and various dip angle events. The trace number is 150 and the sampling frequency is 1000 Hz. The selected seismic wavelet is Ricker wavelet, which can be expressed as
[figures omitted; refer to PDF]
Our MSFN contains 12 MSF blocks and all convolutional layers have 32 filters. There are 24 pixels overlapping for training in the cropped training seismic data of
The denoising performance of our method is evaluated as below. All models are trained with the same training set for fair comparison. And the codes of contrastive methods are publicly released. The reconstruction results are justified by a quantitative evaluation metric of the PSNR [36], which can be calculated as follows:
Firstly, synthetic seismic records are used in the comparing study of our method and the traditional WTD, CTD, and STD methods and deep learning IDN model, and the results are presented in Figure 4. A better result was achieved by our method with higher PSNR value, compared with other methods. In addition, the performance of our method is also quantitatively evaluated on synthetic seismic records. Table 1 shows the PSNRs (dB) with bolded optimal values. The comparison indicates much higher PSNRs of our method than that of others. Table 2 presents the PSNRs (dB) on synthetic seismic records 1-3 scale fusion networks. It can be seen that 3 scale fusion network achieve the best results.
[figures omitted; refer to PDF]
Table 1
Comparison of PSNR on synthetic seismic records for different methods.
Noisy data (dB) | Traditional methods | Deep learning-based methods | |||
Wavelet threshold | Curvelet threshold | Shearlet threshold | IDN | MSFN (ours) | |
78.1486 | 87.2569 | 90.3568 | 92.1864 | 95.0346 | 96.8461 |
73.6958 | 81.9565 | 86.6764 | 88.5431 | 92.6243 | 94.5628 |
68.1429 | 76.3467 | 83.1584 | 85.6681 | 89.8992 | 91.6515 |
64.6281 | 71.4122 | 74.5964 | 76.1624 | 82.8568 | 84.1436 |
Average | 79.2431 | 83.6970 | 85.6400 | 90.1037 | 91.8010 |
Table 2
Comparison of PSNR on synthetic seismic records for 1-3 scale fusion networks.
Noisy data (dB) | 1 scale (baseline) | 2 scale (ours) | 3 scale (ours) |
78.1486 | 94.8629 | 95.9651 | 96.8461 |
73.6958 | 91.5431 | 93.4957 | 94.5628 |
68.1429 | 88.7264 | 90.7647 | 91.6515 |
64.6281 | 81.6358 | 83.3652 | 84.1436 |
Average | 89.1921 | 90.8977 | 91.8010 |
Secondly, the SEG/EAGE salt and overthrust models are used for evaluating our method. Table 3 shows the PSNRs (dB) with bolded optimal values. The significantly higher PSNR values of our method are obtained again, comparing with other methods. Particularly, our method shows a more considerable performance when the level of noise in the seismic data increases. In Table 3, the higher the noise level is, the lower the SNR is. Table 4 presents the PSNRs (dB) on SEG/EAGE salt and overthrust model for 1-3 scale fusion networks. It can be seen that 3 scale fusion network achieve the best results. Besides, a qualitative comparison between our model and a deep learning-based one and the results are presented in Figure 5. We have Figure 5(b) by adding random noise to the clean seismic data (Figure 5(a)). Figures 5(c) and 5(d) are the obtained denoised results. Obviously, our method is an ideal denoising method for removing random noises while keeping coherent details.
Table 3
Comparison of PSNR on SEG/EAGE salt and overthrust model for different methods.
Noise level | Traditional methods | Deep learning-based methods | |||
Wavelet threshold | Curvelet threshold | Shearlet threshold | IDN | MSFN (ours) | |
0.05 | 91.25 | 92.35 | 93.18 | 95.03 | 95.84 |
0.10 | 83.95 | 85.66 | 86.54 | 87.62 | 89.25 |
0.20 | 77.34 | 78.25 | 79.96 | 82.35 | 84.45 |
0.30 | 72.41 | 72.59 | 73.94 | 75.85 | 78.36 |
Average | 81.24 | 82.21 | 83.41 | 85.21 | 83.41 |
Table 4
Comparison of PSNR on SEG/EAGE salt and overthrust model for 1-3 scale fusion networks.
Noise level | 1 scale (baseline) | 2 scale (ours) | 3 scale (ours) |
0.05 | 94.71 | 95.42 | 95.84 |
0.10 | 87.33 | 88.23 | 89.25 |
0.20 | 81.95 | 83.04 | 84.45 |
0.30 | 75.24 | 76.95 | 78.36 |
Average | 84.81 | 85.91 | 83.41 |
[figures omitted; refer to PDF]
Furthermore, we select the field data examples (noisy seismic data of Liaohe depression, China) in the same data acquisition work area with the same way of excitation and reception to validate the processing result of the proposed method. We utilize traditional random noise reduction modular of large processing system to roughly denoise these data, guaranteeing no loss of valid information. The denoised data are view as targeted clear data. Due to the generalization ability of deep learning, we add random noise of various levels to the targeted data with the aim to learn and recognize noise and effective signals. Similarly, to obtain additional expanded versions, we rotate these real seismic data by 45°, 90°, 135°, 180°, 270°, and 360°, respectively. 80% versions are selected as training sets; the rest is as test sets. Figures 6(a) and 6(b) present the original noisy data and the denoised result by our method, respectively. Some effective signals highlight, especially the region in the red ellipse; the interlayer structure is clearer; and the continuity of the events is also enhanced, as shown in Figure 6.
[figures omitted; refer to PDF]
5. Conclusions
We propose a novel network MSFN based on CNNs to denoise seismic data, wherein a cascaded MSF block set and seismic data features are exploited to perform noise attenuation. The results qualitatively and quantitatively demonstrate our scheme is much superior to other leading edge ones especially in promoting the seismic data restoration ability.
Acknowledgments
This work was supported in part by the National Science Foundation of China (NSFC) under Grant No. 61602226, in part by the PhD Startup Foundation of Liaoning Technical University of China under Grant No. 18-1021, and in part by the Project supported by Discipline Innovation Team of Liaoning Technical University of China under Grant No. LNTU20TD-22.
[1] T. Qiu, J. Liu, W. Si, D. O. Wu, "Robustness optimization scheme with multi-population co-evolution for scale-free wireless sensor networks," IEEE/ACM Transactions on Networking, vol. 27 no. 3, pp. 1028-1042, DOI: 10.1109/TNET.2019.2907243, 2019.
[2] N. Chen, T. Qiu, X. Zhou, K. Li, M. Atiquzzaman, "An intelligent robust networking mechanism for the internet of things," IEEE Communications Magazine, vol. 57 no. 11, pp. 91-95, DOI: 10.1109/MCOM.001.1900094, 2019.
[3] C. Chen, L. Liu, T. Qiu, D. O. Wu, Z. Ren, "Delay-aware grid-based geographic routing in urban VANETs: a backbone approach," IEEE/ACM Transactions on Networking, vol. 27 no. 6, pp. 2324-2337, DOI: 10.1109/TNET.2019.2944595, 2019.
[4] Z. L. Ning, P. R. Dong, X. J. Wang, X. P. Hu, L. Guo, B. Hu, Y. Guo, T. Qiu, R. Y. Kwok, "Mobile edge computing enabled 5G health monitoring for internet of medical things: a decentralized game theoretic approach," IEEE Journal on Selected Areas in Communications, vol. 39 no. 2, pp. 463-478, DOI: 10.1109/JSAC.2020.3020645, 2021.
[5] Z. L. Ning, P. R. Dong, X. J. Wang, X. P. Hu, J. C. Liu, L. Guo, B. Hu, R. Kwok, V. Leung, "Partial computation offloading and adaptive task scheduling for 5g-enabled vehicular networks," IEEE Transactions on Mobile Computing, vol. 19,DOI: 10.1109/TMC.2020.3025116, 2020.
[6] Z. L. Ning, P. R. Dong, X. J. Wang, S. P. Wang, X. P. Hu, S. Guo, T. Qiu, B. Hu, Y. K. Ricky, "Distributed and dynamic service placement in pervasive edge computing networks," IEEE Transactions on Parallel and Distributed Systems, vol. 32,DOI: 10.1109/TPDS.2020.3046000, 2021.
[7] X. J. Wang, Z. L. Ning, S. Guo, L. Wang, "Imitation learning enabled task scheduling for online vehicular edge computing," IEEE Transactions on Mobile Computing, vol. 19,DOI: 10.1109/TMC.2020.3012509, 2020.
[8] J. H. Zhang, J. M. Lu, "Application of wavelet transform in removing noise and improving resolution of seismic data," Journal of University of Petroleum: Edition of Natural Science, vol. 31 no. 12, pp. 1975-1981, 1997.
[9] R. Neelamani, A. I. Baumstein, D. G. Gillard, M. T. Hadidi, W. L. Soroka, "Coherent and random noise attenuation using the curvelet transform," The Leading Edge, vol. 27 no. 2, pp. 240-248, DOI: 10.1190/1.2840373, 2008.
[10] J. Xu, W. Wang, J. Gao, W. Chen, "Monochromatic noise removal via sparsity-enabled signal decomposition method," IEEE Geoscience Remote Sensing Letter, vol. 10 no. 3, pp. 533-537, DOI: 10.1109/LGRS.2012.2212271, 2013.
[11] L. Chengming, W. Deli, W. Tong, F. Fei, C. Hao, M. Gege, "Random seismic noise attenuation based on the shearlet transform," Acta Petrolei Sinica, vol. 35 no. 4, pp. 692-699, 2014.
[12] Y. Chen, S. Fomel, "EMD-seislet transform," 85th SEG Annual International Meeting, Expanded Abstracts, pp. 4775-4778, 2015.
[13] B. Wang, R. S. Wu, X. Chen, J. Li, "Simultaneous seismic data interpolation and denoising with a new adaptive method based on dreamlet transform," Geophysical Journal International, vol. 201 no. 2, pp. 1182-1194, DOI: 10.1093/gji/ggv072, 2015.
[14] W. Liu, S. Cao, Y. Chen, S. Zu, "An effective approach to attenuate random noise based on compressive sensing and curvelet transform," Journal of Geophysics and Engineering, vol. 13 no. 2, pp. 135-145, DOI: 10.1088/1742-2132/13/2/135, 2016.
[15] Y. H. Yuan, Y. B. Wang, Y. K. Liu, X. Chang, "Non-dyadic curvelet transform and its application in seismic noise elimination," Chinese Journal of Geophysics, vol. 56 no. 3, pp. 1023-1032, 2013.
[16] S. Beckouche, J. W. Ma, "Simultaneous dictionary learning and denoising for seismic data," Geophysics, vol. 79 no. 3, pp. A27-A31, DOI: 10.1190/geo2013-0382.1, 2014.
[17] Y. Chen, "Fast dictionary learning for noise attenuation of multidimensional seismic data," Geophysical Journal International, vol. 209 no. 1, pp. 21-31, DOI: 10.1093/gji/ggw492, 2017.
[18] C. Dong, C. C. Loy, K. He, X. Tang, "Learning a deep convolutional network for image super-resolution," Proceedings of European Conference on Computer Vision (ECCV), pp. 184-199, .
[19] C. Dong, C. C. Loy, X. O. Tang, "Accelerating the super-resolution convolutional neural network," Proceedings of European Conference on Computer Vision (ECCV), pp. 391-407, .
[20] J. Kim, J. K. Lee, K. M. Lee, "Accurate image super-resolution using very deep convolutional networks," Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1646-1654, .
[21] Y. Zhang, K. Li, K. Li, L. Wang, B. Zhong, Y. Fu, "Image super-resolution using very deep residual channel attention networks," Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 294-310, .
[22] T. Tong, G. Li, X. Liu, Q. Gao, "Image super-resolution using dense skip connections," Proceedings of the IEEE Conference on Computer Vision (ICCV), pp. 4809-4817, .
[23] B. Lim, S. Son, H. Kim, S. Nah, K. Mu Lee, "Enhanced deep residual networks for single image super-resolution," Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshop (CVPRW), pp. 136-144, .
[24] Y. Tai, J. Yang, X. M. Liu, "Image super-resolution via deep recursive residual network," Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3147-3155, .
[25] Y. Tai, J. Yang, X. Liu, C. Xu, "Memnet: a persistent memory network for image restoration," Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4539-4547, 2017.
[26] Y. Zhang, Y. Tian, Y. Kong, B. Zhong, Y. Fu, "Residual dense network for image super-resolution," Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), .
[27] Z. Hui, X. M. Wang, X. B. Gao, "Fast and accurate single image super-resolution via information distillation network," Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 723-731, .
[28] J. Li, F. Fang, K. Mei, G. Zhang, "Multi-scale residual network for image super-resolution," Proceedings of European Conference on Computer Vision (ECCV), pp. 527-542, .
[29] Z. Li, J. Yang, Z. Liu, X. Yang, G. Jeon, W. Wu, "Feedback network for image super-resolution," Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3867-3876, .
[30] L. L. Canales, "Random noise reduction," 54th Annual International Meeting of SEG Technical Program Expanded Abstracts, pp. 525-527, 1984.
[31] D. Bonar, M. Sacchi, "Denoising seismic data using the nonlocal means algorithm," Geophysics, vol. 77 no. 1, pp. A5-A8, DOI: 10.1190/geo2011-0235.1, 2012.
[32] Y. Chen, J. Ma, "Random noise attenuation by fx empirical-mode decomposition predictive filtering," Geophysics, vol. 79 no. 3, pp. V81-V91, DOI: 10.1190/geo2013-0080.1, 2014.
[33] W. Liu, S. Cao, Y. Chen, "Application of variational mode decomposition in random noise attenuation and time frequency analysis of seismic data," In EAGE 78th Annual International Conference and Exhibition, Extended Abstracts, .
[34] X. Glorot, A. Bordes, Y. Bengio, "Deep sparse rectifier neural networks," Proceedings of the fourteenth international conference on artificial intelligence and statistics, pp. 315-323, .
[35] F. Aminzadeh, N. Burkhard, T. Kunz, L. Nicoletis, F. Rocca, "3-D modeling project: 3rd report," The Leading Edge, vol. 14 no. 2, pp. 125-128, DOI: 10.1190/1.1437102, 1995.
[36] Z. Wang, A. C. Bovik, H. R. Sheikh, E. P. Simoncelli, "Image quality assessment: from error visibility to structural similarity," IEEE Transactions on Image Processing, vol. 13 no. 4, pp. 600-612, DOI: 10.1109/TIP.2003.819861, 2004.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Copyright © 2021 Yu Sang et al. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Abstract
Convolutional neural network- (CNN-) based deep learning (DL) architectures have achieved great success in many fields such as remote sensing, medical image processing, and computer vision. Recently, CNN-based models have also been attempted to solve geophysical problems. This paper presents a noise attenuation method of seismic data via a novel deep learning (DL) architecture, namely, deep multiscale fusion network (MSFN). Firstly, we integrate multiscale fusion (MSF) block to adaptively exploit local signal features at different scales from seismic data. And then, a series of stacked MSF blocks are formed into MSFN, which can restore the noisy seismic data effectively and preserve more useful signal information. Furthermore, a comparative study of our method and other leading edge ones is conducted by using synthetic seismic records and the SEG/EAGE salt and overthrust models. The results qualitatively and quantitatively show the capability of our method of achieving higher peak signal-to-noise ratios (PSNRs) while preserving much more useful information, comparing with other methods. Finally, our method is utilized in the real seismic data processing, obtaining satisfactory results.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer