Full text

Turn on search term navigation

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The opacity of the atmosphere of the Sun is due to processes such as Thomson scattering, bound–bound transitions and photodetachment (bound–free) of hydrogen and positronium ions. The well-studied free–free transitions involving photons, electrons, and hydrogen atoms are re-examined, while free–free transitions involving positrons are considered for the first time. Cross sections, averaged over a Maxwellian velocity distribution, involving positrons are comparable to those involving electrons. This indicates that positrons do contribute to the opacity of the atmosphere of the Sun. Accurate results are obtained because definitive phase shifts are known for electron–hydrogen and positron–hydrogen scattering.

Details

Title
A Note on the Opacity of the Sun’s Atmosphere
Author
Pesnell, William D  VIAFID ORCID Logo 
First page
37
Publication year
2020
Publication date
2020
Publisher
MDPI AG
e-ISSN
22182004
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2426878427
Copyright
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.