Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In this paper, an acousto-optic (AO) Q-switch based on α-BaTeMo2O9 (α-BTM) crystal is designed and further applied to generate a laser pulse at 639 nm for the first time. The α-BTM AO Q-switch demonstrates a large diffraction angle of 0.93° and a high diffraction efficiency of 85% at 639 nm. In the experiment, a maximum AO Q-switched output power of 362 mW is achieved at a repetition rate of 30 kHz, under a maximum absorbed pump power of 3.60 W, corresponding to a slope efficiency of 15.2%. With transmittance of T = 3%, the shortest Q-switching pulse width of 54.7 ns is generated at a repetition rate of 1 kHz. Meanwhile, the beam quality factor M2 of the above laser is measured, presenting the magnitude of 1.14 at both x and y directions. Our findings indicate that α-BTM AO Q-switch could act as an excellent switching device at 639 nm which may help to explore potential applications in the visible field.

Details

Title
A Novel α-BaTeMo2O9 Acousto-Optic Switch for Generating Stable 639 nm Pulsed Laser
Author
Zhang, Ke 1 ; Guo, Feifei 2 ; Jin, Yicheng 1 ; Li, Kuan 1 ; Meng, Lihua 1 ; Wang, Peifu 1 ; Liu, Shande 1 ; Gao, Zeliang 2 ; Xutang Tao 2 

 College of Electronic and Information Engineering, Shandong University of Science and Technology, Qingdao 266590, China 
 State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China 
First page
334
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
23046732
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2791685981
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.