Full Text

Turn on search term navigation

Copyright © 2021 Qian Cheng et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0/

Abstract

Crow search algorithm (CSA) is a new type of swarm intelligence optimization algorithm proposed by simulating the crows’ intelligent behavior of hiding and retrieving food. The algorithm has the characteristics of simple structure, few control parameters, and easy implementation. Like most optimization algorithms, the crow search algorithm also has the disadvantage of slow convergence and easy fall into local optimum. Therefore, a crow search algorithm based on improved flower pollination algorithm (IFCSA) is proposed to solve these problems. First, the search ability of the algorithm is balanced by the reasonable change of awareness probability, and then the convergence speed of the algorithm is improved. Second, when the leader finds himself followed, the cross-pollination strategy with Cauchy mutation is introduced to avoid the blindness of individual location update, thus improving the accuracy of the algorithm. Experiments on twenty benchmark problems and speed reducer design were conducted to compare the performance of IFCSA with that of other algorithms. The results show that IFCSA has better performance in function optimization and speed reducer design problem.

Details

Title
A Novel Crow Search Algorithm Based on Improved Flower Pollination
Author
Cheng, Qian 1   VIAFID ORCID Logo  ; Huang, Huajuan 2   VIAFID ORCID Logo  ; Chen, Minbo 1   VIAFID ORCID Logo 

 College of Electronic Information, Guangxi University for Nationalities, Nanning 530000, China 
 College of Artificial Intelligence, Guangxi University for Nationalities, Nanning 530000, China 
Editor
Qingzheng XU
Publication year
2021
Publication date
2021
Publisher
John Wiley & Sons, Inc.
ISSN
1024123X
e-ISSN
15635147
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2594363609
Copyright
Copyright © 2021 Qian Cheng et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0/