Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Condensation of the reaction between enrofloxacin and ethylenediamine in the existence of glacial acetic acid produced a new N,N-ethylene (bis 1-cyclopropyl-7-(4-ethylpiperazin-1-yl)-6-fluoro-1,4-dihydroquinoline-3-carboxylic acid Schiff base (H2Erx-en). H2Erx-en was used as a tetra-dentate ligand to produce novel complexes by interacting with metal ions iron(III), yttrium(III), zirconium(IV), and lanthanum(III). The synthetic H2Erx-en and its chelates had been detected with elemental analysis, spectroscopic methods, mass spectrometry, thermal studies, conductometric and magnetic measurements experiments. The calculated molar conductance of the complexes in 1 × 10−3 M DMF solution shows that iron(III), yttrium(III) and lanthanum(III) are 1:1 electrolytes, however the zirconium(IV) complex is non-electrolyte. The infrared spectra of H2Erx-en chelates indicated that the carboxylic group is deprotonated and H2Erx-en is associated with metals as a tetra-dentate through nitrogen and oxygen atoms. The disappearance of the carboxylic proton in all complexes corroborated information concerning H2Erx-en deprotonation and complexation with metal ions, according to 1H NMR data. Thermal analysis revealed the abundance of H2O particles in the chelates’ entrance and outlet spheres, indicating the disintegration pattern of H2Erx-en and their chelates. The Coats–Redfern and Horowitz–Metzeger approaches were utilized to calculate the thermodynamic items (Ea, ΔS *, ΔH *, and ΔG *) at n = 1 and n ≠ 1. The resulting data reveal better organized chelate building activation. Density functional theory (DFT) was created to properly grasp the optimal architecture of the molecules. The chelates are softer than H2Erx-en, with estimates varying between 95.23 eV to 400.00 eV, compared to 31.47 eV for H2Erx-en. The disc diffusion technique was utilized to assess H2Erx-en and their chelates in an antimicrobial assay against various food and phytopathogens. The zirconium(IV) chelate has the most potent antibacterial action and is particularly efficient against Salmonella typhi.

Details

Title
Novel Enrofloxacin Schiff Base Metal Complexes: Synthesis, Spectroscopic Characterization, Computational Simulation and Antimicrobial Investigation against Some Food and Phyto-Pathogens
Author
Mohamed, Amira A 1   VIAFID ORCID Logo  ; Ahmed, Fatma M 2 ; Zordok, Wael A 3 ; El-Shwiniy, Walaa H 4   VIAFID ORCID Logo  ; Sadeek, Sadeek A 3 ; Elshafie, Hazem S 5   VIAFID ORCID Logo 

 Department of Basic Science, Zagazig Higher Institute of Engineering and Technology, Zagazig 44519, Egypt 
 Regional Joint Laboratory, Directorate of Health Affairs, Zagazig 44519, Egypt 
 Department of Chemistry, Faculty of Science, Zagazig University, Zagazig 44519, Egypt 
 Department of Chemistry, Faculty of Science, Zagazig University, Zagazig 44519, Egypt; Department of Chemistry, College of Science, University of Bisha, Bisha 61922, Saudi Arabia 
 School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, Viale dell’Ateneo Lucano, 85100 Potenza, Italy 
First page
177
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
23046740
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2734629256
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.