It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Alzheimer’s disease (AD), a chronic neurodegenerative brain disorder, caused by the accumulation of abnormal proteins called amyloid, is one of the prominent causes of mortality worldwide. Since there is a scarcity of experienced neurologists, manual diagnosis of AD is very time-consuming and error-prone. Hence, automatic diagnosis of AD draws significant attention nowadays. Machine learning (ML) algorithms such as deep learning are widely used to support early diagnosis of AD from magnetic resonance imaging (MRI). However, they provide better accuracy in binary classification, which is not the case with multi-class classification. On the other hand, AD consists of a number of early stages, and accurate detection of them is necessary. Hence, this research focuses on how to support the multi-stage classification of AD particularly in its early stage. After the MRI scans have been preprocessed (through median filtering and watershed segmentation), benchmark pre-trained convolutional neural network (CNN) models (AlexNet, VGG16, VGG19, ResNet18, ResNet50) carry out automatic feature extraction. Then, principal component analysis is used to optimize features. Conventional machine learning classifiers (Decision Tree, K-Nearest Neighbors, Support Vector Machine, Linear Programming Boost, and Total Boost) are deployed using the optimized features for staging AD. We have exploited the Alzheimer’s disease Neuroimaging Initiative(ADNI) data set consisting of AD, MCIs (MCI), and cognitive normal (CN) classes of images. In our experiment, the SVM classifier performed better with the extracted ResNet50 features, achieving multi-class classification accuracy of 99.78% during training, 99.52% during validation, and 98.71% during testing. Our approach is distinctive because it combines the advantages of deep feature extractors, conventional classifiers, and feature optimization.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer