Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Numerous radiation-hardened-by-design (RHBD) flip-flops have been developed to increase the dependability of digital chips for space applications over the past two decades. In this paper, the radiation immunity and performance of seven well-known RHBD flip-flops are discussed. A novel cross-connected dual modular redundant true single-phase clock (TSPC) D flip-flop (CCDM-TSPC) is proposed. The presented CCDM-TSPC replaces the typical master-slave D flip-flop (MS-DFF) with the fundamental TSPC structure to shorten the circuit’s propagation time. All sensitive points in the circuit are radiation-hardened by using means of cross-connection. The simulation results of the SPECTRE tool show that CCDM-TSPC is completely immune to single-event upsets (SEUs). CCDM-TSPC reduces the C-Q delay by 75% and the layout area by 85% compared with the traditional triple modular redundancy D flip-flop (TMR-DFF).

Details

Title
A Novel Radiation-Hardened CCDM-TSPC Compared with Seven Well-Known RHBD Flip-Flops in 180 nm CMOS Process
Author
Wang, Shixin 1 ; Wang, Lixin 1 ; Wang, Yue 1 ; Guo, Min 1 ; Li, Yuanzhe 1 

 Institute of Microelectronics of the Chinese Academy of Sciences, Beijing 100029, China; University of Chinese Academy of Sciences, Beijing 100049, China 
First page
3098
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20799292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2724229940
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.