It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The evening complex of ELF4-ELF3-LUX proteins is an integral component of a plant circadian clock. LUX ARRHYTHMO (LUX) is one of the key components of the evening complex, and that play a key role in circadian rhythms and flowering. Here, we report that diverged soybean LUX has the additional role in male reproductive development. We studied diurnal and circadian rhythms of soybean LUX (GmLUXa, GmLUXb, and GmLUXc) using qRT-PCR, and show its nuclear localisation by particle bombardment. Yeast-two hybrid (Y2H) studies indicate that both GmLUXb and GmLUXc form an evening complex with GmELF4b and GmELF3a, respectively. Ectopic expression of GmLUXb in Arabidopsis lux mutants can complement functions of AtLUX, whereas GmLUXc generates novel phenotypes of serrated leaves, stunted plants, shortened anther filament, and low seed set. Overall, our results suggest that the LUX gene has diverged in soybean where GmLUXb and GmLUXc share the role to control flowering time, but GmLUXc has evolved to regulate anther filament growth and seed set by regulating the Gibberellin hormone biosynthesis pathway.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details

1 Plant Molecular Biology and Biotechnology Laboratory, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia; Department of Animal, Plant and Soil Science, School of Life Science, La Trobe University, Bundoora, Australia
2 Plant Molecular Biology and Biotechnology Laboratory, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia