It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
This study was performed to characterize surface topography and microhardness of 40 wt pct NiCrBSiC-60 wt pct WC hard coating on TC4 titanium after coaxial laser cladding via Laser Induced Breakdown Spectroscopy (LIBS) and machine learning. The high content of the hard WC particles is accomplished to enhance the abrasion wear resistance of such alloy. Various powder feeding rates were carried out during laser cladding process. The energy-dispersive X-ray analysis assured that W content in the metal matrix notably increased from 26.19 to 53.49 pct while the Ti content decreased from about 15.16 to 0.46 pct for the clad layer processed at 20 and 60 g min−1, respectively. The LIBS measurements successfully estimated such elements’ concentration as well as the clad layers' topography indicating that the effect of material matrix is a crucial challenge. Therefore, canonical correlation analysis and Belsley collinearity diagnostics were established to identify the essential emission lines from the whole spectra. Then, an optimized adaptive boosted random forest classifier was developed for microhardness investigation, with accuracy, sensitivity, and F1 score values of 0.9667. The results, confirmed by the metallurgical study, clarified that most of the titanium and tungsten emission lines have a significant impact on the surface topography as well as the microhardness values. The misclassification was attributed to the matrix effect such that the samples processed at 40 and 60 g min−1 were comparable in microstructure and chemical characterization unlike the one processed at 20 g min−1. Vickers microhardness of the metal matrix coating increased with the increase in the powder feeding rate, which is assured by the quantitative classification model.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Cairo University, Department of Engineering Applications of Lasers, National Institute of Laser Enhanced Science (NILES), Giza, Egypt (GRID:grid.7776.1) (ISNI:0000 0004 0639 9286)
2 Beni-Suef University, Laser Institute for Research and Applications LIRA, Beni-Suef, Egypt (GRID:grid.411662.6) (ISNI:0000 0004 0412 4932)
3 Beni-Suef University, Laser Institute for Research and Applications LIRA, Beni-Suef, Egypt (GRID:grid.411662.6) (ISNI:0000 0004 0412 4932); Universitas Airlangga, Department of Engineering, Faculty of Advanced Technology and Multidiscipline, Surabaya, Indonesia (GRID:grid.440745.6) (ISNI:0000 0001 0152 762X)