Full Text

Turn on search term navigation

© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The cooperative motion of multiple mobile robots has attracted wide attention due to its advantages in military, marine and aerospace fields, and formation control has become a significant technology in the realization of these tasks. However, most of the existing formation control designs of mobile robots do not consider the practical obstacles in the environment, and the maintenance of both formation and trajectory tracking while confronting the obstacles is still a challenging issue. Therefore, in this paper, a virtual-structure-based formation control approach is designed with obstacle avoidance for a system with multiple mobile robots. The basic trajectory is generated for each robot in the group and parameterized to keep the group in formation. A trajectory generator is then established regarding the obstacles, where a potential function is designed to adjust the basic trajectory and replan the reference trajectory to achieve obstacle avoidance. Then, a novel design for the path parameter is proposed to improve the performance of the robot group when encountering obstacles. Finally, a tracking controller is designed to achieve good tracking performance for robots, and the guaranteed performance is achieved via the Lyapunov theorem. A comparative simulation with three sets is carried out, where an objective functionFobjis designed to evaluate the tracking performance in the presence of obstacles. Besides this, a real experiment is implemented to further verify the effectiveness. The simulation and experimental results verify the good formation and tracking performance of the proposed design for a system with multiple mobile robots with obstacle avoidance.

Details

Title
A Novel Virtual-Structure Formation Control Design for Mobile Robots with Obstacle Avoidance
Author
Chen, Xuanlin; Huang, Fanghao  VIAFID ORCID Logo  ; Zhang, Yougong  VIAFID ORCID Logo  ; Chen, Zheng  VIAFID ORCID Logo  ; Liu, Shuo  VIAFID ORCID Logo  ; Nie, Yong; Tang, Jianzhong; Zhu, Shiqiang
First page
5807
Publication year
2020
Publication date
2020
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2437269344
Copyright
© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.