Full Text

Turn on search term navigation

Copyright © 2021, Chen et al. This work is published under https://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

We study the oscillatory behavior of qPlus sensors with a long tilted tip by means of finite element simulations. The vibration modes of a qPlus sensor with a long tip are quite different from those of a cantilever with a short tip. Flexural vibration of the tungsten tip will occur. The tip can no longer be considered as a rigid body that moves with the prong of the tuning fork. Instead, it oscillates both horizontally and vertically. The vibration characteristics of qPlus sensors with different tip sizes were studied. An optimized tip size was derived from obtained values of tip amplitude, ratio between vertical and lateral amplitude components, output current, and quality factor. For high spatial resolution the optimal diameter was found to be 0.1 mm.

Details

Title
Numerical analysis of vibration modes of a qPlus sensor with a long tip
Author
Chen Kebei; Liu Zhenghui; Xie Yuchen; Zhang, Chunyu; Xu Gengzhao; Song, Wentao; Xu, Ke
University/institution
U.S. National Institutes of Health/National Library of Medicine
Pages
82-92
Publication year
2021
Publication date
2021
Publisher
Beilstein-Institut zur Föerderung der Chemischen Wissenschaften
e-ISSN
21904286
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2595289361
Copyright
Copyright © 2021, Chen et al. This work is published under https://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.