Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The impact of matrix material on the mechanical properties of natural-fiber-reinforced hybrid composites was studied by comparing their experimental, and numerical analysis results. In the present work hemp and flax fibers were used as reinforcement and epoxy resin and ecopoxy resin along with hardener were used as matrix materials. To study the influence of the matrix material, two sets of hybrid composites were fabricated by varying the matrix material. The composite samples were fabricated by using the compression-molding technique followed by a hand layup process. A total of five different composites were fabricated by varying the weight fraction of fiber material in each set based on the rule of the hybridization process. After fabrication, the mechanical properties of the composite samples were tested and morphological studies were analyzed by using SEM-EDX analysis. The flexural-test fractured specimens were analyzed by using a scanning electron microscope (SEM). In addition, theoretical analysis of the elastic properties of hybrid composites was carried out by using the Halpin–Tsai approach. The results showed that the hybrid composites had superior properties to individual fiber composites. Overall, epoxy resin matrix composites exhibited superior properties to ecopoxy matrix composites.

Details

Title
Numerical and Experimental Analysis of Mechanical Properties of Natural-Fiber-Reinforced Hybrid Polymer Composites and the Effect on Matrix Material
Author
Atmakuri, Ayyappa; Palevicius, Arvydas  VIAFID ORCID Logo  ; Vilkauskas, Andrius; Janusas, Giedrius  VIAFID ORCID Logo 
First page
2612
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20734360
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2686139447
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.