Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In order to ensure the safety of the cooling water source of coastal nuclear power plants (NPP), trash-blocking nets (TBNs) are usually installed at the entrance of the penstock to prevent marine sewage and organisms flowing into the front pool of the pump house of the nuclear power plant. The safety evaluation of these trash-blocking nets is of paramount importance for the stable operation of a nuclear power plant. However, there is no reliable analysis method for improving the design of trash-blocking nets and mooring systems. In this study, a numerical model of in-current trash-blocking nets based on the lumped mass method was developed to calculate the tension force on the trash-blocking nets and mooring system. A comparison with the experimental data indicates that the present numerical model is appropriate for calculating the in-current hydrodynamic loads on the trash-blocking nets. In addition, the effects of the width of trash-blocking nets, hanging ratio, water depth, and net solidity are discussed in detail, and the damage process of trash-blocking nets was also investigated. The results indicate that the maximum tension force on the trash-blocking net linearly increases with the increasing width of trash-blocking nets, and it is greatly decreased with the increase in the horizontal hanging ratio of trash-blocking nets. It can be increased by 200% when the net solidity is increased from 0.16 to 0.6. Two damage modes for mooring lines can be observed, which are determined by the strength of mooring lines.

Details

Title
Numerical Investigation of the Hydrodynamic Behavior of Trash-Blocking Nets for Water Intake Engineering of Nuclear Power Plant
Author
Jiang, Zhenqiang 1 ; Wang, Tongyan 2 ; Wang, Bin 1 ; Xu, Tiaojian 2 ; Ma, Changlei 3 ; Shen, Kanmin 1   VIAFID ORCID Logo 

 Key Laboratory of Far-Shore Wind Power Technology of Zhejiang Province, Hangzhou 311122, China; [email protected] (Z.J.); [email protected] (B.W.); [email protected] (K.S.) 
 State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Dalian 116024, China; [email protected] 
 National Ocean Technology Center, Tianjin 300112, China; [email protected] 
First page
234
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
23115521
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2693974820
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.