Full Text

Turn on search term navigation

© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

A tsunami is a significant coastal hazard that causes destructive damage to coastal cities in the world. Besides, tsunamis, generated on the west coast of Japan, damaged coastal cities on the east coast of Korea in 1983 and 1993. In recent years, there has been increasing interest in the potential tsunami zone near the west coast of Japan. Therefore, it is important to have tsunami observation instruments in proper locations for tsunami detection and warning aspect. This study proposes the optimal region for offshore tsunami observation instrument deployment under the limited condition that the tsunami source in out of the territorial sea by investigating areas with the highest tsunami detection probability along with maximum evacuation time and bottom slope. Using the Cornell Multi-grid Coupled Tsunami (COMCOT) numerical model and a probabilistic approach, this study suggests the optimal region for offshore tsunami detection instrument deployment to be the northeast area of Ulleung-do Island in the eastern sea of Korea.

Details

Title
Numerical and Probabilistic Study on the Optimal Region for Tsunami Detection Instrument Deployment in the Eastern Sea of Korea
Author
Lee, Eunju  VIAFID ORCID Logo  ; Jung, Taehwa; Shin, Sungwon  VIAFID ORCID Logo 
First page
6071
Publication year
2020
Publication date
2020
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2440538593
Copyright
© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.