Full text

Turn on search term navigation

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The Panjinbulake loess landslide is located in the western part of the Loess Plateau, in Yining County, Xinjiang, China. It is characterized by its long runout and rapid speed. Based on a field geological survey and laboratory test data, we used the DAN-W dynamic numerical simulation software (Dynamic Analysis Of Landslides, Release 10, O. Hungr Geotechnical Research Inc., West Vancouver, BC, Canada) and multiple sets of rheological models to simulate the whole process of landslide movement. The best rheological groups of the features of the loess landslide process were obtained by applying the Voellmy rheological model in the debris flow area and applying the Frictional rheological model in the sliding source area and accumulation area. We calculated motion features indicating that the landslide movement duration was 22 s, the maximum movement speed was 20.5 m/s, and the average thickness of the accumulation body reached 5.5 m. The total accumulation volume, the initial slide volume and the long runout distance were consistent with the actual situation. In addition, the potential secondary disaster was evaluated. The results show that the DAN-W software and related model parameters can accurately simulate and predict the dynamic hazardous effects of high-speed and long runout landslides. Together, these predictions could help local authorities make the best hazard reduction measures and to promote local development.

Details

Title
Numerical Runout Modeling Analysis of the Loess Landslide at Yining, Xinjiang, China
Author
Yang, Longwei 1 ; Wei, Yunjie 2 ; Wang, Wenpei 2 ; Zhu, Sainan 2 

 School of Geological Engineering and Geomatics, Chang’an University, Xi’an 710054, China; China Institute of Geo-Environment Monitoring, CGS, Beijing 100081, China 
 China Institute of Geo-Environment Monitoring, CGS, Beijing 100081, China 
First page
1324
Publication year
2019
Publication date
2019
Publisher
MDPI AG
e-ISSN
20734441
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2550470336
Copyright
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.