Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Ships sailing through cold regions frequently encounter floe ice fields. An air-bubble system that reduces friction between the hull and ice floes is thus considered useful for the reduction of ice-induced resistance. In this study, a numerical analysis procedure based on coupled finite volume method (FVM) and discrete element method (DEM) is proposed to simulate complicated hull-water-gas-ice interactions for ice-going ships installed with air-bubble systems. The simulations reveal that after turning on the air-bubble system ice floes in contact with the hull side wall are pushed away from the hull by the gas-water mixture, resulting in an ice-free zone close to the side hull. It is found that the drag reduction rate increases with the increase of ventilation, while the bow ventilation plays a deciding role in the overall ice-resistance reduction. The proposed procedure is expected to facilitate design of new generations of ice-going ships.

Details

Title
Numerical Simulation of an Air-Bubble System for Ice Resistance Reduction
Author
Bao-Yu, Ni 1   VIAFID ORCID Logo  ; Wei, Hongyu 1 ; Li, Zhiyuan 2   VIAFID ORCID Logo  ; Fang, Bin 3 ; Xue, Yanzhuo 1 

 College of Shipbuilding Engineering, Harbin Engineering University, Harbin 150001, China 
 Department of Mechanics and Maritime Sciences, Chalmers University of Technology, SE-41296 Gothenburg, Sweden 
 Marine Design & Research Institute of China, Shanghai 200011, China 
First page
1201
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20771312
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2716555693
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.