Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In this study, the performance evaluation of a semi-type floating offshore wind turbine system according to the direction of the incoming waves is investigated. The target model in this this study is a DTU 10 MW reference wind turbine and a LIFES50+ OO-Star Wind Floater Semi 10 MW, which is the semisubmersible platform. Numerical simulation is performed using FAST developed by National Renewable Energy Laboratory (NREL), which is an aero-hydro-servo-elastic fully coupled simulation tool. The analysis condition used in this study is the misalignment condition, which is the wind direction fixed at 0 degree and the wave direction changed at 15 degrees intervals. In this study, two main contents could be confirmed. First, it is confirmed that sway, roll, and yaw motions occur even though the direction of the incoming waves is 0 degree. The cause of the platform’s motion such as sway, roll and yaw is the turbulent wind and gyroscope phenomenon. In addition, the optimal value for the nacelle–yaw angle that maximizes the rotor power and minimizes the tower load is confirmed by solving the multiobjective optimization problem. These results show the conclusion that setting the initial nacelle–yaw angle can reduce the tower load and get a higher generator power. Second, it is confirmed that the platform’s motion and loads may be underestimated depending on the interval angle of incidence of the wind and waves. In particular, through the load diagram results, it is confirmed that most of the results are asymmetric, and the blade and tower loads are especially spiky. Through these results, the importance of examining the interval angle of incidence of the wind and waves is confirmed. Unlike previous studies, this will be a more considerable issue as turbines become larger and platforms become more complex.

Details

Title
A Numerical Study on the Performance Evaluation of a Semi-Type Floating Offshore Wind Turbine System According to the Direction of the Incoming Waves
Author
Ahn, Hyeonjeong  VIAFID ORCID Logo  ; Yoon-Jin, Ha; Su-gil, Cho; Chang-Hyuck Lim; Kim, Kyong-Hwan  VIAFID ORCID Logo 
First page
5485
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
19961073
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2700598996
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.