Full Text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

A chemical bonding of several metallabenzenes and metallabenzynes was studied via an adaptive natural density partitioning (AdNDP) algorithm and the induced magnetic field analysis. A unique chemical bonding pattern was discovered where the M=C (M: Os, Re) double bond coexists with the delocalized 6c-2e π-bonding elements responsible for aromatic properties of the investigated complexes. In opposition to the previous description where 8 delocalized π-electrons were reported in metallabenzenes and metallabenzynes, we showed that only six delocalized π-electrons are present in those molecules. Thus, there is no deviation from Hückel’s aromaticity rule for metallabenzynes/metallabenzenes complexes. Based on the discovered bonding pattern, we propose two thermodynamically stable novel molecules that possess not only π-delocalization but also retain six σ-delocalized electrons, rendering them as doubly aromatic species. As a result, our investigation gives a new direction for the search for carbon-metal doubly aromatic molecules.

Details

Title
Occurrence of Double Bond in π-Aromatic Rings: An Easy Way to Design Doubly Aromatic Carbon-Metal Structures
Author
Tkachenko, Nikolay V 1 ; Muñoz-Castro, Alvaro 2 ; Boldyrev, Alexander I 3 

 Department of Chemistry and Biochemistry, Utah State University, 0300 Old Main Hill, Logan, UT 84322-0300, USA; [email protected]; Grupo de Química Inorgánica y Materiales Moleculares, Facultad de Ingeniería, Universidad Autonoma de Chile, El Llano Subercaseaux, Santiago 2801, Chile; [email protected] 
 Grupo de Química Inorgánica y Materiales Moleculares, Facultad de Ingeniería, Universidad Autonoma de Chile, El Llano Subercaseaux, Santiago 2801, Chile; [email protected] 
 Department of Chemistry and Biochemistry, Utah State University, 0300 Old Main Hill, Logan, UT 84322-0300, USA; [email protected] 
First page
7232
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
14203049
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2608135446
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.