Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Water body extraction techniques from remotely sensed images are crucial in water resources distribution studies, climate change studies and other work. The traditional remote sensing water body extraction has the problems of low accuracy and being time-consuming and laborious, and the water body recognition technique based on deep learning is more efficient and accurate than the traditional threshold method; however, there is the problem that the basic model of semantic segmentation is not well-adapted to complex remote sensing images. Based on this, this study adopts an OCNet feature extraction network to modify the base model of semantic segmentation, and the resulting model achieves excellent performance on water body remote sensing images. Compared with the traditional water body extraction method and the base network, the OCNet modified model has obvious improvement, and is applicable to the extraction of water bodies in true-color remote sensing images such as high-score images and unmanned aerial vehicle remote sensing images. The results show that the model in this study can realize automatic and fast extraction of water bodies from remote sensing images, and the predicted water body image accuracy (ACC) can reach 85%. This study can realize fast and accurate extraction of water bodies, which is of great significance for water resources acquisition and flood disaster prediction.

Details

Title
OCNet-Based Water Body Extraction from Remote Sensing Images
Author
Weng, Yijie 1 ; Li, Zongmei 2 ; Tang, Guofeng 2 ; Wang, Yang 3 

 School of Computer and Information Engineering, Xiamen University of Technology, Xiamen 361024, China; [email protected] 
 Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100094, China; [email protected] 
 College of Geography and Planning, Nanning Normal University, Nanning 530100, China; [email protected] 
First page
3557
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20734441
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2882853141
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.