Content area
Full Text
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
1. Introduction
The problems of FDEs arise in various areas of science and engineering. In particular, multiterm fractional differential equations have been used to model various types of viscoelastic damping (see, e.g., [1–13] and the references therein). In the last few decades both theory and numerical analysis of FDEs have received an increasing attention (see, e.g., [1–4, 14–17] and references therein).
Spectral methods are a class of techniques used in applied mathematics and scientific computing to numerically solve some differential equations. The main idea is to write the solution of the differential equation as a sum of certain orthogonal polynomial and then obtain the coefficients in the sum in order to satisfy the differential equation. Due to high-order accuracy, spectral methods have gained increasing popularity for several decades, particularly in the field of computational fluid dynamics (see, e.g., [18–24] and the references therein).
The usual spectral methods are only available for bounded domains for solving FDEs; see [25–28]. However, it is also interesting to consider spectral methods for FDEs...
|
|
|
---|
|
|
|
|
---|